Articles tagged "gre quant"

GRE Smart Books with Neil: A Mind for Numbers: How to Excel at Math and Science (Even if you Flunked Algebra) by Barbara Oakley

by

Manhattan Prep GRE Instructor Neil Thornton - Book Reviews to Ace the Test

Can’t get enough of Neil’s GRE wisdom? Few can. Fortunately, you can join him twice monthly for a free hour and a half study session in Mondays with Neil.


As a long-time instructor of all things standardized testing (GRE, GMAT, LSAT, SAT), I love reading books about math, logic, learning, skill acquisition, neurology, and psychology. Is important to me to stay up-to-date with anything that will help my students use their study time effectively. In this blog series, I’ll be bringing you book reviews and recommendations, as well as excerpts and summaries you can put into practice right away on your GRE journey. Read more

The Art of the GRE Sanity Check

by

blog-sanityDid you know that you can attend the first session of any of our online or in-person GRE courses absolutely free? We’re not kidding! Check out our upcoming courses here.


You know what’s really frustrating? Making a ridiculous math mistake on a GRE Quant problem, totally by accident, and never noticing it. Add a three-second sanity check to your GRE Quant routine, and you’ll be more likely to catch small mistakes before they turn into huge disasters. Read more

This simple approach will help you avoid mistakes on GRE algebra

by

Blog-SimpleApproachGRE high-scorers might not be smarter than everyone else, but they do think about the test differently. One key difference is in how high-scorers do algebra. They make far fewer algebraic mistakes, because, either consciously or subconsciously, they use mathematical rules to check their work as they simplify. Here’s how to develop that habit yourself. Read more

The Math Beast Challenge Problem of the Week – December 9, 2013

by
Math Beast
Each week, we post a new GRE Challenge Problem for you to attempt. If you submit the correct answer, you will be entered into that week’s drawing for two free Manhattan Prep GRE Strategy Guides.

If x and y are integers such that x < y and xy = 4, which of the following could be the value of 2x + 4y?

 

To see this week’s answer choices and to submit your pick, visit our Challenge Problem page.

The Math Beast Challenge Problem of the Week – December 2, 2013

by
Math Beast
Each week, we post a new GRE Challenge Problem for you to attempt. If you submit the correct answer, you will be entered into that week’s drawing for two free Manhattan Prep GRE Strategy Guides.

What is the greatest prime factor of 399?

To see this week’s answer choices and to submit your pick, visit our Challenge Problem page.

GRE Quantitative Comparison: Don’t Be a Zero, Be a Hero

by

GRE-ZERO-HERO-BLOGWhen it comes to quantitative comparison questions, zero is a pretty important number, because it’s a weird number. It reacts differently from other numbers when placed in some of the situations. And zero isn’t the only weirdo out there.

Most of us equate “number” with “positive integer”, and for good reason. Most of the numbers we think about and use in daily life are positive integers. Most of our math rules were learned, at least at first, with positive integers.

The GRE knows this, and takes advantage of our assumption. That’s why it’s important to remember all the “other” numbers out there. In particular, when testing numbers to determine the possible values of a variable, there are a few categories of numbers you want to keep in mind.

If I’m going to think about picking numbers, I want to pick numbers that are as different as possible. I try to choose my numbers from a mixture of seven categories, which can be remembered with the word FROZEN:

FR: fractions (both positive and negative)
O: one and negative none
ZE: zero
N: negatives

So we’ve got positive and negative integers (the bigger the absolute value, the better), positive and negative one, positive and negative fractions, and zero. Don’t forget, zero is an integer too!

There are other categories of numbers to think about, particularly if they are mentioned in the problem: odd versus even, prime versus non-prime, etc. But the seven groups listed above account for most of the different ways that numbers behave when you “do math” to them. Because of that fact, picking numbers from different categories can be a fast way to understand the limits of a problem.

To illustrate my point, let’s think about the value of x raised to the power of y. What happens to the value of that expression as y gets bigger? Let’s simplify our lives even further by stipulating that y is a positive integer.

What first comes to mind is the idea that as we increase the value of the exponent, we increase the value of the expression. Well, if x is a positive integer, that’s true: the expression gets exponentially bigger as y increases. Unless x is the positive integer 1, in which case the expression stays the same size, regardless of the value of y. The same is true if x is equal to 0. If x is a positive proper fraction, the expression gets smaller as the value of y increases.
Read more

The Math Beast Challenge Problem of the Week – September 30, 2013

by
Math BeastEach week, we post a new GRE Challenge Problem for you to attempt. If you submit the correct answer, you will be entered into that week’s drawing for two free Manhattan Prep GRE Strategy Guides.

 

A retailer previously bought an item from a wholesaler for $20 and sold it to consumers for a retail price of $35.  After a wholesale cost reduction, the retailer reduces the retail price by 10%, yet the retailer’s profit on the item still increases by 20%.  By what percent did the wholesale cost decrease?

 

See the answer choices and submit your pick over on our Challenge Problem page.

The Math Beast Challenge Problem of the Week – September 9, 2013

by
Math BeastEach week, we post a new GRE Challenge Problem for you to attempt. If you submit the correct answer, you will be entered into that week’s drawing for two free Manhattan Prep GRE Strategy Guides.

If c is a positive integer, which of the following could be the remainder after (c + 1)3 – c3 is divided by 6?

 

See the answer choices and submit your pick over on our Challenge Problem page.

The Math Beast’s Challenge Problem of the Week – October 24th

by

Math BeastEach week, we post a new Challenge Problem for you to attempt. If you submit the correct answer, you will be entered into that week’s drawing for two free Manhattan Prep GRE Strategy Guides.

This week’s question is below. Get out their scrap paper and start solving!

{8, 10, 11, 16, 20, 22, 25, x}

In the set above, x is an odd integer between 13 and 21, inclusive. Each possible x value is equally probable.

Which of the following statements has the highest probability of being true?

Read more